ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
The progress so far: An update on the Reactor Pilot Program
It has been about three months since the Department of Energy named 10 companies for its new Reactor Pilot Program, which maps out how the DOE would meet the goal announced by executive order in May of having three reactors achieve criticality by July 4, 2026.
Zhilei Chen, Huoping Zhong, Yin Hu, Tingwen Yan, Ruilong Yang, Qifa Pan, Lizhu Luo, Yongbin Zhang, Daoming Chen, Kezhao Liu
Nuclear Science and Engineering | Volume 199 | Number 2 | February 2025 | Pages 239-252
Research Article | doi.org/10.1080/00295639.2024.2348856
Articles are hosted by Taylor and Francis Online.
Nitriding technologies are promising surface modification techniques of uranium based on pulsed laser irradiating and glow plasma treatment. Nitrided layers with different nitrogen contents (UN0.35, UN0.75, UN1.08 and UN1.5) were prepared on the surface of uranium. The present study aims to investigate the microstructure and corrosion properties of the reaction of the UNx layers with ultra-low water vapor at room temperature. The electronic structures were analyzed in situ by X-ray photoelectron spectroscopy in high vacuum.
The results showed that the UN0.35, UN0.75, and UN1.08 samples were mainly composed of uranium nitride (UN) and metallic uranium, while the surface microstructure of the UN1.5 sample was U2N3. The dense and uniform nitride layer with a grain size of 20 to 50 nm was obtained on the uranium surface, which acted as a barrier and prevented the further diffusion of anions into the matrix. The corrosion products of the UN0.35, UN0.75, and UN1.08 samples were mainly UO2-xNy and UO2 after reaction with the water vapor. The contents of UO2-xNy increased with increasing nitrogen contents, and the corrosion rate decreased significantly. The intermediate compounds UO2-xNy reacted slowly with the water vapor, and eventually converted to UO2. Meanwhile, the corrosion products of the UN1.5 sample were mainly U2N3+xOy and UO2-xNy after reaction with the water vapor. The percentage of U2N3+xOy and UO2-xNy remained almost stable over a long period of time, which indicated that the high contents of U2N3+xOy and UO2-xNy prolonged the time for complete conversion to UO2. It can be concluded that the U-N-O ternary compounds retarded the corrosion process and the UNx layers with high nitrogen contents showed excellent corrosion resistance.