ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
T. L. Gordon, M. M. R. Williams, M. D. Eaton
Nuclear Science and Engineering | Volume 199 | Number 2 | February 2025 | Pages 223-238
Research Article | doi.org/10.1080/00295639.2024.2348859
Articles are hosted by Taylor and Francis Online.
An approximate method for determining the maturity time is presented for applications in low neutron source nuclear reactor startup simulations. This new method relies only on the calculation of the mean neutron density and does not require the additional calculation of the variance in the neutron density as the traditional method does. The most accurate method for determining the safe neutron source strength, required to sufficiently mitigate the probability of a rogue transient during nuclear reactor startup, uses the Pál-Bell equations. However, as space and energy dependencies are included, the numerical computation become computationally demanding. Therefore, approximate methods that significantly reduce the computation time and improve the computational efficiency of the simulation while remaining very accurate are extremely useful. The approximate method for determining the maturity time presented in this study has shown excellent agreement with traditional methods while offering an order of magnitude reduction in computation time.