ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hanford proposes “decoupled” approach to remediating former chem lab
Working with the Environmental Protection Agency, the Department of Energy has revised its planned approach to remediating contaminated soil underneath the Chemical Materials Engineering Laboratory (commonly known as the 324 Building) at the Hanford Site in Washington state. The soil, which has been designated the 300-296 waste site, became contaminated as the result of a spill of highly radioactive material in the mid-1980s.
Rodolfo M. Ferrer, Edward W. Larsen
Nuclear Science and Engineering | Volume 199 | Number 2 | February 2025 | Pages 194-208
Research Article | doi.org/10.1080/00295639.2024.2356986
Articles are hosted by Taylor and Francis Online.
An infinite-medium analysis is performed for neutron transport spatial discretization methods in planar geometry. Angular flux solutions of the spatially continuous transport equation, which are driven by a linear (or quadratic) source, are shown to vary linearly (or quadratically) in space and angle; these are used to assess whether the discretized transport equations preserve certain cell-averaged and edge quantities. Each of the continuous angular flux solutions has a scalar flux that satisfies the standard diffusion equation; our analysis predicts whether the transport discretizations yield an accurate diffusion coefficient and (diffusion) spatial differencing scheme.
The linear moment–based discretization methods under consideration, which are found to preserve certain features of the linear (or quadratic) infinite-medium angular flux solutions, are the familiar linear discontinuous (LD), lumped linear discontinuous (LLD), and linear characteristic (LC) schemes. The step characteristic scheme, which yields an unphysically large diffusion coefficient, is revisited and shown to possess, for diffusive problems, a solution error that would occur if an unphysical anisotropic scattering term had been included in the starting discretized transport equations.
The numerical results verify the theoretical predictions and demonstrate the accuracy of the LD, LLD, and LC schemes in highly scattering problems that are optically thick. Our numerical results also illustrate the impact of inaccuracies in the diffusion coefficient on the numerical solutions of eigenvalue problems. The analysis in this paper has practical implications in the choice of spatial schemes used to solve realistic eigenvalue problems.