ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Rodolfo M. Ferrer, Edward W. Larsen
Nuclear Science and Engineering | Volume 199 | Number 2 | February 2025 | Pages 194-208
Research Article | doi.org/10.1080/00295639.2024.2356986
Articles are hosted by Taylor and Francis Online.
An infinite-medium analysis is performed for neutron transport spatial discretization methods in planar geometry. Angular flux solutions of the spatially continuous transport equation, which are driven by a linear (or quadratic) source, are shown to vary linearly (or quadratically) in space and angle; these are used to assess whether the discretized transport equations preserve certain cell-averaged and edge quantities. Each of the continuous angular flux solutions has a scalar flux that satisfies the standard diffusion equation; our analysis predicts whether the transport discretizations yield an accurate diffusion coefficient and (diffusion) spatial differencing scheme.
The linear moment–based discretization methods under consideration, which are found to preserve certain features of the linear (or quadratic) infinite-medium angular flux solutions, are the familiar linear discontinuous (LD), lumped linear discontinuous (LLD), and linear characteristic (LC) schemes. The step characteristic scheme, which yields an unphysically large diffusion coefficient, is revisited and shown to possess, for diffusive problems, a solution error that would occur if an unphysical anisotropic scattering term had been included in the starting discretized transport equations.
The numerical results verify the theoretical predictions and demonstrate the accuracy of the LD, LLD, and LC schemes in highly scattering problems that are optically thick. Our numerical results also illustrate the impact of inaccuracies in the diffusion coefficient on the numerical solutions of eigenvalue problems. The analysis in this paper has practical implications in the choice of spatial schemes used to solve realistic eigenvalue problems.