ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Stephen Yoo, Greg Mohler, Fan Zhang
Nuclear Science and Engineering | Volume 199 | Number 1 | January 2025 | Pages 162-175
Research Article | doi.org/10.1080/00295639.2024.2372520
Articles are hosted by Taylor and Francis Online.
The transition from analog to digital instrumentation and control (I&C) systems introduces new threats caused by cyberattacks in the nuclear industry. This paper proposes a self-healing strategy to respond to a false data injection attack that targets digital I&C systems, which is a type of cyberattack commonly targeting nuclear power plants with the potential to cause serious physical impacts. This resilience strategy for self-healing control contains three components: (1) an anomaly detection model that can detect false data injection attacks, (2) a device-level control that utilizes inferred values to perform control under a detected false data injection, and (3) a system-level control that leverages another controller that is not under attack to lead the system back to a safe operation state when the device-level control is unavailable. Anomaly detection and device-level control use an autoencoder while system-level control utilizes reinforcement learning. The proposed self-healing resilience strategy is demonstrated with a generic pressurized water reactor (GPWR) simulator under false data injections, targeting the steam generator water level. The results show that the proposed strategy effectively leads the system back to a normal operation state under various false data injection cases.