ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
Jesson Hutchinson, Jennifer Alwin, Theresa Cutler, Matthew Gooden, Noah Kleedtke, Denise Neudecker, Nicholas Thompson, Robert Weldon, Nicholas Whitman, Robert Little
Nuclear Science and Engineering | Volume 199 | Number 1 | January 2025 | Pages 42-60
Research Article | doi.org/10.1080/00295639.2024.2343118
Articles are hosted by Taylor and Francis Online.
Reaction rate ratios are integral responses that are used within the criticality experiments field because they contain spectral information. While these types of measurements have been utilized for nuclear data validation with historic experiments, few experiments of this type have been utilized for recent experiments, as few exist. This work focuses on measured reaction rate ratios for two nearly bare plutonium critical assemblies with different geometries: one that is cube like (with a Pu mass of 40 kg) and one that is slab like (with a Pu mass of 109 kg). Irradiations were performed with both configurations in which foils were placed near the center of the assembly. Plutonium, highly enriched uranium, depleted uranium, and Au foils were included in the irradiation and counted via high-purity germanium detectors. From these measurements, reaction rate ratios were calculated.
Measured and simulated values and uncertainties are presented for the reaction rate ratios. Ratios utilizing the following reactions are given in this work: 197Au(n, ), 197Au(n,2n), 235U(n,fission), 238U(n,fission), 238U(n,2n), 238U(n,), and 239Pu(n,fission). Uncertainties for the measured reaction rate ratios ranged from 4% to 7%, and the contribution of various parameters to this uncertainty was investigated. The results are compared to historical experiments and should be used for nuclear data validation for future nuclear data library releases. These measurements are part of the EUCLID (Experiments Underpinned by Computational Learning for Improvements in Nuclear Data) project, which utilizes measurement responses in addition to keff (such as these reaction rate ratios) to help reduce uncertainties in 239Pu nuclear data.