ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Masahiro Fukushima, Masaki Andoh, Yasunobu Nagaya
Nuclear Science and Engineering | Volume 199 | Number 1 | January 2025 | Pages 18-41
Research Article | doi.org/10.1080/00295639.2024.2347706
Articles are hosted by Taylor and Francis Online.
A series of integral experiments were conducted at the fast critical assembly (FCA) of the Japan Atomic Energy Agency, simulating light water reactor cores with a tight lattice cell of highly enriched mixed-oxide (MOX) fuel containing >15% fissile plutonium (Pu). The three experimental configurations of the FCA-XXII-1 assembly were constructed using foamed polystyrene with different void fractions (45%, 65%, and 95%) to clarify the prediction accuracy of neutronics calculation codes and nuclear data libraries among various neutron spectra. The hydrogen-to–nuclear fuel atomic ratio varied from 0.1 to 0.8. The nuclear characteristics measured in the experiments were criticality (keff), moderator void reactivity worths, and sample reactivity worths using boron carbide (20%, 60%, and 90% 10B enrichment) and Pu (92%, 81%, and 75% fissile Pu ratio).
Preliminary analyses on experiments were conducted using a deterministic calculation code system conventionally used for fast reactors and the Japanese evaluated nuclear data library of JENDL-4.0. The calculated keff values overestimated the experiments beyond the experimental uncertainties. However, most reactivity worth calculations agreed well with the experimental values. Even beyond the experimental uncertainties, discrepancies between the calculation and the experiment were <13%.
Specifically in the reactivity worth analyses of the softer neutron spectra configurations, the treatment of ultrafine energy groups obviously improved the prediction accuracy of the deterministic calculations. Furthermore, reference calculations for criticality and large reactivity worths were performed with the Monte Carlo calculation code MVP3 by modeling the experimental configurations in detail, confirming that the deterministic calculations closely agreed with the reference values.