ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
Xinyi Shen, Ping Tan, Xinze Wang, Songbin Chen, Haimin Xiong
Nuclear Science and Engineering | Volume 199 | Number 1 | January 2025 | Pages 1-17
Research Article | doi.org/10.1080/00295639.2024.2340182
Articles are hosted by Taylor and Francis Online.
In pencil beam scanning proton therapy, the regulation and stabilization of the scanning magnetic field between two spots should be completed as quickly as possible in order to reduce treatment time. Because of the eddy current effect, the dynamic magnetic field lags behind the excitation current. It is significant to analyze the dynamic field and reduce the field stability time to minimize the delivery time and improve the therapy efficiency. In this paper, dynamic magnetic field simulation is carried out with a full lamination model of the scanning magnet in the Huazhong University of Science and Technology Proton Therapy Facility. In addition, a single lamination model instead of a full lamination model is explored to reduce time cost and memory for lamination of no more than 1-mm thickness. The eddy current diffusion trend and the influence of lamination on the eddy current are investigated. Moreover, the effect of lamination thickness (ranging from 5 to 0.1 mm) and current ramp rate (ranging from 20 to 100 A/ms) on the magnetic field stability time is studied. In addition, the characteristic of magnetic stability time for various spot steps is analyzed. Considering two spot patterns with discrete or clustered spots, an optimized delivery strategy with various scanning dead times according to the step is presented. When the lamination is 1 mm, the scanning time can be reduced by 39.2% for a clustered pattern and 38.4% for a discrete pattern using a genetic algorithm based on the different scanning dead-time strategy instead of the fixed dead-time strategy. With a thinner 0.1-mm lamination, the scanning time can be reduced by 49.8% for the clustered pattern and 43.3% for the discrete pattern, compared to that of the 1-mm lamination.