ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Bailey Painter, Dan Kotlyar
Nuclear Science and Engineering | Volume 198 | Number 12 | December 2024 | Pages 2460-2479
Research Article | doi.org/10.1080/00295639.2024.2303548
Articles are hosted by Taylor and Francis Online.
Coupled Monte Carlo (MC) and thermal-hydraulic analysis is valuable as a design or reference tool but can be slow, especially when implemented in a Picard iteration. Previous work has developed a novel prediction block to achieve convergence with fewer MC simulations. The prediction works in two stages: (1) a surrogate-like model predicts macroscopic cross sections on the fly and (2) a reduced-order neutronic model predicts the flux response to the updated cross sections. The main challenge with the prediction block is that the reduced-order neutronic model cannot reproduce the spatial flux distribution with high fidelity.
This paper investigates the well-established Jacobian-free Newton Krylov (JFNK) method to preserve equivalency between a homogeneous (nodal diffusion) solution and a high-fidelity transport (MC) solution. Instead of performing multiple computationally consuming MC simulations, the nonlinear iterative approach iterates on correction parameters, e.g., assembly discontinuity factors (ADFs) or super homogenization (SPH) factors, using unexpensive nodal solutions. The JFNK approach does not require additional overhead from the MC solver to generate flux tallies. Further, the approach iterates on diffusion solutions produced directly from a desired code, thus ensuring that the parameters are compatible with that code.
The approach is applied to correct a nodal diffusion solution for a realistic three-dimensional pressurized water reactor core. The results obtained in the paper show that the method is very successful in reproducing the heterogeneous solution (up to 2.5% difference in assembly flux for SPH and 0.3% for ADFs) without needing to modify the source code of the nodal diffusion solver. In addition, the results show that ADFs yield the best agreement and are also stable (i.e., weakly varying) when thermal-hydraulic fields are perturbed.