ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Senate EPW Committee to hold Nieh nomination hearing
Nieh
The Senate Environment and Public Works Committee will hold a nomination hearing Wednesday for Ho Nieh, President Donald Trump’s nominee to serve as commission at the Nuclear Regulatory Commission.
Trump nominated Nieh on July 30 to serve as NRC commissioner the remainder of a term that will expire June 30, 2029, as Nuclear NewsWire previously reported.
Nieh has been vice president of regulatory affairs at Southern Nuclear since 2021, though since June 2024 he has been at the Institute of Nuclear Power Operations as a loaned executive.
A return to the NRC: If confirmed by the Senate, Nieh would be returning to the NRC after three previous stints totaling nearly 20 years.
Kai Tan, Fan Zhang
Nuclear Science and Engineering | Volume 198 | Number 12 | December 2024 | Pages 2437-2459
Research Article | doi.org/10.1080/00295639.2024.2303542
Articles are hosted by Taylor and Francis Online.
Monitoring three-dimensional flux distribution in a nuclear reactor core is essential for improving safety and economics, which requires strategically placed in-core detectors. However, the deployment of these sensors is often constrained by physical, industrial, and economic limitations. This study treats optimizing the location of in-core detectors as a Markov decision process and develops a reinforcement learning (RL)–based framework to provide a solution for detector placement given a fixed number of detectors and available detector positions. The RL-based framework contains an environment consisting of a Proper Orthogonal Decomposition–based power reconstruction function paired with a novel reward function based on the power reconstruction error and a well-educated agent that updates the detector placement. Four RL algorithms including Proximal Policy Optimization, Deep Q-Network, Advantage Actor-Critic, and Monte Carlo Tree Search are investigated to optimize the detector placement and are analyzed. Genetic Algorithm (GA), a traditional optimization approach, is applied for comparison. The findings reveal that RL outperforms GA in terms of the quality of optimal solutions, demonstrating an inclination toward locating a global solution. Moreover, the flexible nature of RL enables the integration of developed novel reward functions from a specific reactor core into other reactors, considering the particular engineering requirements within the RL-based framework, thereby enhancing the optimization of in-core detector configurations.