ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
Kai Tan, Fan Zhang
Nuclear Science and Engineering | Volume 198 | Number 12 | December 2024 | Pages 2437-2459
Research Article | doi.org/10.1080/00295639.2024.2303542
Articles are hosted by Taylor and Francis Online.
Monitoring three-dimensional flux distribution in a nuclear reactor core is essential for improving safety and economics, which requires strategically placed in-core detectors. However, the deployment of these sensors is often constrained by physical, industrial, and economic limitations. This study treats optimizing the location of in-core detectors as a Markov decision process and develops a reinforcement learning (RL)–based framework to provide a solution for detector placement given a fixed number of detectors and available detector positions. The RL-based framework contains an environment consisting of a Proper Orthogonal Decomposition–based power reconstruction function paired with a novel reward function based on the power reconstruction error and a well-educated agent that updates the detector placement. Four RL algorithms including Proximal Policy Optimization, Deep Q-Network, Advantage Actor-Critic, and Monte Carlo Tree Search are investigated to optimize the detector placement and are analyzed. Genetic Algorithm (GA), a traditional optimization approach, is applied for comparison. The findings reveal that RL outperforms GA in terms of the quality of optimal solutions, demonstrating an inclination toward locating a global solution. Moreover, the flexible nature of RL enables the integration of developed novel reward functions from a specific reactor core into other reactors, considering the particular engineering requirements within the RL-based framework, thereby enhancing the optimization of in-core detector configurations.