ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Mustafa K. Jaradat, Namjae Choi, Abdalla Abou-Jaoude
Nuclear Science and Engineering | Volume 198 | Number 12 | December 2024 | Pages 2403-2436
Research Article | doi.org/10.1080/00295639.2024.2306702
Articles are hosted by Taylor and Francis Online.
The molten salt reactor (MSR) flowing-fuel simulation capability of the Griffin-Pronghorn-coupled multiphysics code system developed by Idaho National Laboratory (INL) was verified against the Center National de la Recherche Scientifique (CNRS) MSR benchmark problem. Griffin and Pronghorn, which are INL’s neutronics and thermal-hydraulics codes built upon the Multiphysics Object-Oriented Simulation Environment (MOOSE) framework, have been recently extended to handle the flowing fuel of MSRs causing the drift of delayed neutron precursors (DNP). In the Griffin-Pronghorn code system, Griffin provides the fission rate density to Pronghorn, which simulates the generation, decay, and transport of DNPs along with the fluid, and the redistributed DNP densities are fed back to Griffin. The coupling and transfers are largely automatically managed at the framework level by the powerful MultiApp system of MOOSE. The verification results against the CNRS benchmark problem demonstrate that the Griffin-Pronghorn code system can accurately simulate the unique physics phenomena of MSRs in both steady-state and transient conditions.