ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
Mustafa K. Jaradat, Namjae Choi, Abdalla Abou-Jaoude
Nuclear Science and Engineering | Volume 198 | Number 12 | December 2024 | Pages 2403-2436
Research Article | doi.org/10.1080/00295639.2024.2306702
Articles are hosted by Taylor and Francis Online.
The molten salt reactor (MSR) flowing-fuel simulation capability of the Griffin-Pronghorn-coupled multiphysics code system developed by Idaho National Laboratory (INL) was verified against the Center National de la Recherche Scientifique (CNRS) MSR benchmark problem. Griffin and Pronghorn, which are INL’s neutronics and thermal-hydraulics codes built upon the Multiphysics Object-Oriented Simulation Environment (MOOSE) framework, have been recently extended to handle the flowing fuel of MSRs causing the drift of delayed neutron precursors (DNP). In the Griffin-Pronghorn code system, Griffin provides the fission rate density to Pronghorn, which simulates the generation, decay, and transport of DNPs along with the fluid, and the redistributed DNP densities are fed back to Griffin. The coupling and transfers are largely automatically managed at the framework level by the powerful MultiApp system of MOOSE. The verification results against the CNRS benchmark problem demonstrate that the Griffin-Pronghorn code system can accurately simulate the unique physics phenomena of MSRs in both steady-state and transient conditions.