ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
The spark of the Super: Teller–Ulam and the birth of the H-bomb—rivalry, credit, and legacy at 75 years
In early 1951, Los Alamos scientists Edward Teller and Stanislaw Ulam devised a breakthrough that would lead to the hydrogen bomb [1]. Their design gave the United States an initial advantage in the Cold War, though comparable progress was soon achieved independently in the Soviet Union and the United Kingdom.
Muhammad Ishaq, Muhammad Zaman, Muhammad Ilyas, Alam Nawaz Khan Wardag, Mansoor H. Inayat
Nuclear Science and Engineering | Volume 198 | Number 12 | December 2024 | Pages 2382-2402
Research Article | doi.org/10.1080/00295639.2024.2328967
Articles are hosted by Taylor and Francis Online.
Innovative reactor designs like small modular reactors (SMRs) have the potential to operate in a natural circulation (NC) boiling mode, but this mode introduces flow oscillations that pose a risk to nuclear safety. Therefore, it is essential to investigate the effects of various parameters on these oscillations. This study focuses on predicting the operational behavior of the Integral PWR-type SMR Test Rig (iPSTR) when operating in NC and subcooled boiling conditions. The iPSTR replicates an NC boiling loop with a vertical heater, vertical cooler configuration, high-temperature and high-pressure conditions, and nonuniform diameter structure. Using the RELAP5 model, thermal-hydraulic simulations were performed to anticipate how varying degrees of inlet subcooling affects parameters such as mass flow rate and void fraction, with experimental data used to validate the model’s accuracy. This investigation covers a range of process conditions, including system pressures from 5 to 20 bars, core input power varying from 8.5 to 14.5 kW, and degrees of inlet subcooling from 1 to 49 K. The results reveal that increasing input power leads to higher average mass flow rates, while at a constant system pressure, higher input power stabilizes flow rates at higher degrees of inlet subcooling. Moreover, reduced and more consistent oscillation amplitudes and frequencies at higher core power result at more elevated system pressure, enhancing the safety of the iPSTR facility.