ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
Feryantama Putra, Syarip, Sihana
Nuclear Science and Engineering | Volume 198 | Number 12 | December 2024 | Pages 2368-2381
Research Article | doi.org/10.1080/00295639.2024.2306103
Articles are hosted by Taylor and Francis Online.
Medical radioisotope production using neutron irradiation via fission reaction requires a sufficient neutron source. The Kartini reactor has been proposed and studied to become a neutron source for radioisotope production under the Subcritical Assembly for 99Mo Production (SAMOP) project, which uses uranyl nitrate solution as the irradiation target. A full-scale experiment involving a liquid fission product is difficult to conduct and requires facility rearrangement to reduce the risk of contamination. Although a small-batch experiment is safer to perform, a pre-experimental assessment is necessary to address the practicality of production and the accompanying problems. The goals of this assessment are (1) to characterize the Kartini reactor irradiation facilities’ flux through experiment and Monte Carlo benchmark simulation, (2) to predict the irradiation product inventory in relation to the variation of uranium concentration and the measured flux, and (3) to predict the irradiated sample gamma spectrum reading using high-purity germanium detector simulation. The irradiation simulation uses natural uranium as a control parameter, which caused the irradiation inventory dominated by actinides from transmutation. The simulation also presents the possibility of instant small-batch 99Mo production using the measured Lazy Susan facilities’ flux from a neutronic perspective. The qualitative assessment of the predicted irradiation inventory and its spectrum reading from different sample concentrations are discussed along with the recommendation and possible action to improve the experiment or future production process.