ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
The spark of the Super: Teller–Ulam and the birth of the H-bomb—rivalry, credit, and legacy at 75 years
In early 1951, Los Alamos scientists Edward Teller and Stanislaw Ulam devised a breakthrough that would lead to the hydrogen bomb [1]. Their design gave the United States an initial advantage in the Cold War, though comparable progress was soon achieved independently in the Soviet Union and the United Kingdom.
Feryantama Putra, Syarip, Sihana
Nuclear Science and Engineering | Volume 198 | Number 12 | December 2024 | Pages 2368-2381
Research Article | doi.org/10.1080/00295639.2024.2306103
Articles are hosted by Taylor and Francis Online.
Medical radioisotope production using neutron irradiation via fission reaction requires a sufficient neutron source. The Kartini reactor has been proposed and studied to become a neutron source for radioisotope production under the Subcritical Assembly for 99Mo Production (SAMOP) project, which uses uranyl nitrate solution as the irradiation target. A full-scale experiment involving a liquid fission product is difficult to conduct and requires facility rearrangement to reduce the risk of contamination. Although a small-batch experiment is safer to perform, a pre-experimental assessment is necessary to address the practicality of production and the accompanying problems. The goals of this assessment are (1) to characterize the Kartini reactor irradiation facilities’ flux through experiment and Monte Carlo benchmark simulation, (2) to predict the irradiation product inventory in relation to the variation of uranium concentration and the measured flux, and (3) to predict the irradiated sample gamma spectrum reading using high-purity germanium detector simulation. The irradiation simulation uses natural uranium as a control parameter, which caused the irradiation inventory dominated by actinides from transmutation. The simulation also presents the possibility of instant small-batch 99Mo production using the measured Lazy Susan facilities’ flux from a neutronic perspective. The qualitative assessment of the predicted irradiation inventory and its spectrum reading from different sample concentrations are discussed along with the recommendation and possible action to improve the experiment or future production process.