ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
EnergySolutions to help explore advanced reactor development in Utah
Utah-based waste management company EnergySolutions announced that it has signed a memorandum of understating with the Intermountain Power Agency and the state of Utah to explore the development of advanced nuclear power generation at the Intermountain Power Project (IPP) site near Delta, Utah.
Zhaoyu Liang, Ding She, Yutong Wen, Lei Shi, Zuoyi Zhang
Nuclear Science and Engineering | Volume 198 | Number 12 | December 2024 | Pages 2291-2303
Research Article | doi.org/10.1080/00295639.2024.2311595
Articles are hosted by Taylor and Francis Online.
Dispersion fuel exhibits excellent safety performance and effectively reduces the risk of radioactive leakage, making it widely applied in high-temperature gas-cooled reactors (HTGRs) and other advanced nuclear reactors. The presence of stochastic media in dispersion fuel leads to the challenging double-heterogeneity problem in neutron transport calculations. Hébert proposed a collision probability analysis model for treating stochastic media, which has been implemented in the DRAGON5 code. As one important basis of derivation, it is assumed in the Hébert model that the neutron transmission probability is identical to the neutron escaping probability in matrix material. In this paper, it is figured out that the assumption is not rigorous for realistic stochastic media. Then, an improved approach based on the Hébert model is proposed to take into account the realistic chord length distribution as well as to ensure the conservation and reciprocity of collision probabilities. The proposed methodology has been implemented in the HTGR lattice physics code XPZ. By numerical analysis against Monte Carlo reference solutions, it is demonstrated that the improved Hébert model with chord length correction gives good accuracy for addressing realistic double-heterogeneity problems.