ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
Hanlin Shu, Liangzhi Cao, Qingming He, Qi Zheng, Tao Dai
Nuclear Science and Engineering | Volume 198 | Number 11 | November 2024 | Pages 2209-2229
Research Article | doi.org/10.1080/00295639.2023.2295065
Articles are hosted by Taylor and Francis Online.
The unstructured mesh (UM)–based Monte Carlo (MC) method can utilize modern computer-aided-design/computer-aided-engineering platforms to obtain geometric models with reduced human effort and is capable of generating high-resolution tally data. This approach presents a significant advantage over the traditional Constructive Solid Geometry (CSG)–based MC method in handling complex geometries and conducting multiphysics calculations. In this study, the UM-based MC calculation capability was developed in the MC code NECP-MCX. On this basis, an automatic UM-based Consistent Adjoint-Driven Importance Sampling (CADIS) method was further studied and implemented in which the adjoint deterministic calculation, forward MC calculation, and variance reduction (VR) parameter generation were performed on the unified UM model. To achieve this, the discrete ordinates (SN)–Discontinuous Finite Element Method (DFEM) code NECP-SUN was embedded into NECP-MCX as the adjoint transport solver. Validations of the developed code and evaluations of the VR performance of the UM-based CADIS method were conducted on the Pool Critical Assembly (PCA) Replica benchmark and H. B. Robinson Unit 2 (HBR-2) benchmark. The numerical results indicated that the developed UM-based particle tracking capability achieved comparable accuracy to the CSG-based approach. Furthermore, compared to the traditional CADIS method, the UM-based CADIS method demonstrated higher figure-of-merit (FOM) values (3.5 to 44 times higher for the PCA Replica benchmark and 2.22 to 2.92 times higher for the HBR-2 benchmark), highlighting the superior VR performance of the UM-based CADIS method over the traditional CADIS method.