ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
Cheng Peng, Jian Deng, Jiang Wu
Nuclear Science and Engineering | Volume 198 | Number 11 | November 2024 | Pages 2190-2208
Research Article | doi.org/10.1080/00295639.2023.2292930
Articles are hosted by Taylor and Francis Online.
Because of its superior thermal-hydraulic qualities, liquid sodium has been applied to a variety of industries, including energy storage, solar energy, sodium-cooled fast reactors, and aerospace. However, fires brought on by sodium leaks at high pressure can have major thermodynamic repercussions and put employees and equipment in use at risk directly or indirectly. As a result, a realistic and accurate forecast of the combustion behavior of sodium droplet swarm can offer technical backing for the use of liquid sodium in engineering as well as a way of sodium fire prevention and control. Spray dynamics (droplet settling, droplet particle size distribution, etc.), combustion kinetics (premixed combustion, gas phase combustion, etc.), sodium aerosol diffusion, and other specialized phenomena all contribute to the complex process of sodium droplet swarm combustion. The NACOM code created by Brookhaven National Laboratory for sodium droplet swarm combustion is utilized in this paper as a framework. The code is first validated using the benchmark of the sodium droplet swarm combustion tests carried out by prestigious institutions. The validation results demonstrate that the code’s drag model, droplet combustion model, and heat transfer model are to blame for the significantly overestimated thermodynamic effects of sodium droplet swarm combustion. NACOM is subsequently developed twice for the authors’ previously developed vapor-liquid two-layer-structure drag model, chemical kinetic combustion model, and suitable heat transfer coefficient. It is then thoroughly assessed for the separate-effects tests and integral-effects test. The evaluation results demonstrate that the optimized drag model accelerates the settling of sodium droplets due to the consideration of the sodium-vapor drag reduction effect, reducing the thermodynamic effects of liquid sodium combustion; the optimized premixed combustion model can accurately predict the low-temperature sodium droplet swarm combustion conditions, resolving the issue of serious misvaluation of the original version of NACOM. The associated research findings can serve as valuable resources and tools for deeper comprehension of the combustion effects and mechanisms of sodium droplet swarm under various operating settings (such as leakage rate and oxygen concentration).