ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
E. Asano, S. Dewji
Nuclear Science and Engineering | Volume 198 | Number 11 | November 2024 | Pages 2157-2173
Research Article | doi.org/10.1080/00295639.2024.2302764
Articles are hosted by Taylor and Francis Online.
This study compares the accuracy, efficiency, and reliability of variance reduction (VR) methods for Monte Carlo radiation transport simulations involving wide-area ground plane (i.e., “surface”) and buried (i.e., “volumetric”) gamma source emissions from environmental soil. The simulation models are idealized external exposure scenarios intended as a basis for deriving site-specific dose-based or carcinogenic risk–based regulatory limits in the radiological site remediation process. These simulations are computationally resource intensive since particle tracks are transported from an extremely large source region to a relatively small detector region. For each simulation, several VR methods are compared with metrics of accuracy, efficiency, and reliability. The MCNP deterministic transport (DXTRAN) VR method was most effective for problems involving sources emitting low-energy gamma rays, and a coupled multicode method was more effective for problems involving sources emitting higher-energy gamma rays that undergo significant attenuation in the soil.