ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Connor Woodsford, James Tutt, Jim E. Morel
Nuclear Science and Engineering | Volume 198 | Number 11 | November 2024 | Pages 2148-2156
Research Article | doi.org/10.1080/00295639.2024.2303107
Articles are hosted by Taylor and Francis Online.
The second-moment (SM) method is a linear variant of the quasi-diffusion (QD) method for accelerating the iterative convergence of Sn source calculations. It has several significant advantages relative to the QD method, diffusion synthetic acceleration, and nonlinear diffusion acceleration. Here, we define a variant of this method for k-eigenvalue calculations that retains the advantages of the original method, and we computationally demonstrate the efficacy of the method for simple example calculations. In particular, this method has two important properties. First, it is a linear acceleration scheme requiring only the solution of a pure k-eigenvalue diffusion equation with a corrective source term as opposed to a k-eigenvalue drift-diffusion equation. Second, unconditional stability is achieved even when the diffusion equation is not discretized in a manner consistent with the Sn spatial discretization. We are unaware of any other scheme that has these properties. We also show a connection between our method and the k-eigenvalue acceleration technique of Barbu and Adams, which motivated us to develop our SM method.