ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
X-energy begins irradiation testing at INL
Advanced reactor and fuel developer X-energy has officially begun confirmatory irradiation testing at Idaho National Laboratory on its TRISO-X fuel. The testing, which is taking place over the course of the next 13 months, will evaluate the fuel across a variety of operating scenarios and—if all goes according to plan—will be instrumental in qualifying it for commercial use.
Theophile Bonnet, Hunter Belanger, Davide Mancusi, Andrea Zoia
Nuclear Science and Engineering | Volume 198 | Number 11 | November 2024 | Pages 2120-2147
Research Article | doi.org/10.1080/00295639.2023.2288328
Articles are hosted by Taylor and Francis Online.
The investigation of correlations in Monte Carlo power iteration has long been dominated by the question of generational correlations and their effects on the estimation of statistical uncertainties. More recently, there has been a growing interest in spatial correlations, prompted by the discovery of neutron clustering. Despite several attempts, a comprehensive framework concerning how Monte Carlo sampling strategies, population control, and variance reduction methods affect the strength of such correlations is still lacking. In this work, we propose a set of global and local (i.e., space-dependent) tallies that can be used to characterize the impact of correlations. These tallies encompass Shannon entropy, pair distance, normalized variance, and Feynman moment. In order to have a clean yet fully meaningful setting, we carry out our analysis in a few homogeneous and heterogeneous benchmark problems of varying dominance ratio. Several classes of collision sampling strategies, population control, and variance reduction techniques are tested, and their relative advantages and drawbacks are assessed with respect to the proposed tallies. The major finding of our study is that branchless collisions, which suppress the emergence of branches in neutron histories, also considerably reduce the effects of correlations in most of the explored configurations.