ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
Thomas Folk, Siddhartha Srivastava, Dean Price, Krishna Garikipati, Brendan Kochunas
Nuclear Science and Engineering | Volume 198 | Number 11 | November 2024 | Pages 2096-2119
Research Article | doi.org/10.1080/00295639.2024.2303544
Articles are hosted by Taylor and Francis Online.
Accurately predicting errors incurred in a cross-section model for two-step reactor analysis enables the development of optimal case matrices and more efficient cross-section models. In a companion paper, we developed a systematic methodology for the partial derivatives cross-section model through rigorous analytic error analysis. In this paper, we verify our methodology against the conventional “brute force” numerical approach using a typical pressurized water reactor (PWR) lattice. By successfully reproducing known results, we gain confidence in our methodology’s application to advanced reactor environments, where optimal case matrices are generally not known. Our error methodology relies on accurately estimating bounds on the derivatives of the cross-section functions, a task we achieve through an order of convergence study. We use these derivative bounds in derived error expressions to obtain pointwise and setwise cross-section error bounds and verify these results with reference solutions of various two-group cross sections. We then propagate the cross-section error bounds to reactivity error using first-order perturbation theory and analyze their combined effect. Application of this approach to our test problem corroborates our prior qualitative findings with quantitative evidence and reveals the relative magnitudes of interpolation and model form error sources across diverse PWR cross-section functionalizations. Our results suggest systematic pathways for improving case matrix construction to minimize the overall error. These findings also confirm what is well known to the light water reactor design community, which is that interpolation error of cross sections for standard interpolation procedures and case matrix structures is on the order of 10 pcm or less. Future work includes exploring different lattice types and functionalizations, extending reactivity bounds to multi-lattice problems, and investigating historical effects within the macroscopic depletion model.