ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Thomas Folk, Siddhartha Srivastava, Dean Price, Krishna Garikipati, Brendan Kochunas
Nuclear Science and Engineering | Volume 198 | Number 11 | November 2024 | Pages 2080-2095
Research Article | doi.org/10.1080/00295639.2023.2288308
Articles are hosted by Taylor and Francis Online.
Accurate assessment of uncertainties in cross-section data is crucial for reliable nuclear reactor simulations and safety analyses. In this study, we focus on the interpolation procedure of the partial derivatives (PD) cross-section model used to evaluate nodal parameters from pregenerated multigroup libraries. Our primary objective is to develop a systematic methodology that enables prediction of the incurred errors in the cross-section model, leading to the development of optimal case matrices, more efficient cross-section models, and informed case matrix construction for reactor types lacking substantial data and experience. We make progress toward this objective through a rigorous analytic error analysis enabled by the derivation of error expressions and bounds for the PD model based on the discovery that the method is a form of Lagrange interpolation. Our investigations reveal distinct outcomes depending on the chosen cross-section functionalizations, achieved by identifying the sources of error. These error sources are found to include interpolation error, which is always present, and model form error, which is a property of the supplied case matrix. We show that simply increasing grid refinement through the addition of branches may not always lead to decreased cross-section errors, particularly in cases where the model form error predominantly contributes to the total error. We present numerical results and verification in a companion paper, showing these different error characteristics for various cross-section functionalizations. Although applied to current light water reactor environments, our methodology offers a means for advanced reactor analysts to develop case matrices with quantified error levels, advancing the goal of a general methodology for robust two-step reactor analysis. Future work includes exploring different lattice types and functionalizations, extending reactivity bounds to multilattice problems, and investigating historical effects within the macroscopic depletion model.