ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Rex Gyeabour Abrefah, Felix Ameyaw
Nuclear Science and Engineering | Volume 198 | Number 10 | October 2024 | Pages 2038-2050
Note | doi.org/10.1080/00295639.2023.2284454
Articles are hosted by Taylor and Francis Online.
The effectiveness of contemporary strategies for conducting fault tree/event tree (FTET) analyses within the realm of probabilistic risk assessment has recently come under rigorous examination. In light of such investigation, facility managers have gained a more profound understanding of the risk and safety implications inherent in the structural and componential integrity of systems (structures, systems, and components). This comprehensive research endeavor harnesses the power of risk models, employing both FTET and binary decision diagrams, to scrutinize and optimize the operational performance of a 10-MW reference Russian research reactor [Water-Water Research Reactor (VVR)] within the framework of probabilistic safety assessment. Moreover, this investigation delves into the intricate web of interrelationships existing among an array of analytical methodologies. These encompass the Fussell-Vesely (FV) importance measure, criticality analysis, Birnbaum analysis, risk achievement worth (RAW), and the differential importance measure, all with a focus on specific foundational events and vital components. Additionally, this note delves into the analysis of multiple significant measures frequently employed for VVR. Notably, the study establishes that merely two importance measures (IMs) prove sufficient for the core damage equation. Furthermore, this note investigates various important measures often employed for VVR. It is shown that two IMs are enough for the core damage equation. In conclusion, RAW, FV importance, or a blend of the two are adequate enough to be frequently employed for the VVR.