ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Nuclear advocates push lawmakers in Texas
As state legislatures nationwide near the end of their spring sessions, nuclear advocates hope to spur momentum on Texas legislation that would provide taxpayer-funded grants to developers of new nuclear technology in the state.
Arief Rahman Hakim, Douglas A. Fynan
Nuclear Science and Engineering | Volume 198 | Number 10 | October 2024 | Pages 2013-2037
Research Article | doi.org/10.1080/00295639.2023.2280346
Articles are hosted by Taylor and Francis Online.
Flux flattening and power uprating of large heavy water power reactors (HWRs) are demonstrated as an application of an accelerator-driven photoneutron source (ADS) in the ADS-CANDU concept where an array of electron linear accelerators is configured around the periphery of a subcritical CANDU-6 core. The localized ADS generated through (e−,γ,n) reactions in the HWR lattice perturbs the reactor power distribution by increasing the power of low-power bundles and depressing the power at the core center relative to the fundamental mode power distribution. Gross power uprating is feasible when the system is near critical, but the ADS array consumes tens of megawatts electric exceeding the power gained by a factor of more than 2 for the conservative ADS performance specifications assumed in the analysis. Several important challenges of fixed-source Monte Carlo simulations of near-critical multiplying media are investigated including severe load imbalance issues with distributed-memory parallel computing architecture and correlated local tallies in nonanalog (implicit absorption) Monte Carlo radiation transport. All subcritical fixed-source simulations in the study readily exceed the default random number stride used in most production Monte Carlo codes, and the stride exceedance causes both bias in local tally results (bundle powers) and spatial autocorrelation of these errors/biases in the large core. A legacy stride exceedance is critically reviewed, and the conclusions and subsequent interpretations of those conclusions are rejected. Several classes of radiation transport Monte Carlo problems are likely to be susceptible to stride exceedance, and this issue needs to be promptly addressed by the Monte Carlo analyst and code developer communities.