ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Mohy Sabry, Neveen S. Abed, Ahmed Omar, Moamen G. El-Samrah, Mohamed Y. M. Mohsen
Nuclear Science and Engineering | Volume 198 | Number 10 | October 2024 | Pages 1998-2012
Research Article | doi.org/10.1080/00295639.2023.2284441
Articles are hosted by Taylor and Francis Online.
This study examines the feasibility of utilizing mixed-oxide fuel [(U0.9, rgPu0.1) O2] instead of traditional UO2 in nuclear reactors. The utilization of (U0.9, rgPu0.1) O2 is particularly significant as it represents an effective approach to nuclear fuel recycling by combining reactor-grade plutonium extracted from partially used nuclear fuel and depleted uranium obtained through the enrichment process. The fundamental neutronic characteristics, such as the radial power distribution, were investigated using the MCNPX 2.7 algorithm to identify the specific channel for subsequent thermal-hydraulic (TH) analysis. The TH analysis was conducted using COMSOL-Multiphysics, allowing for the estimation of the fuel rod’s axial and radial temperature profiles, as well as the determination of the departure from the nucleate boiling ratio. Furthermore, the coupling between heat transfer and solid structure (SS) was achieved using the Multiphysics tool in COMSOL-Multiphysics. This coupling facilitated the simulation of key SS parameters, including von Mises stress, volumetric strain, and displacement, while considering the influence of heat transfer. The results demonstrate significant improvements and enhanced safety margins when utilizing (U0.9, rgPu0.1) O2.