ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
X-energy begins irradiation testing at INL
Advanced reactor and fuel developer X-energy has officially begun confirmatory irradiation testing at Idaho National Laboratory on its TRISO-X fuel. The testing, which is taking place over the course of the next 13 months, will evaluate the fuel across a variety of operating scenarios and—if all goes according to plan—will be instrumental in qualifying it for commercial use.
Satish Kumar Dhurandhar, S. L. Sinha, Shashi Kant Verma
Nuclear Science and Engineering | Volume 198 | Number 10 | October 2024 | Pages 1965-1983
Research Article | doi.org/10.1080/00295639.2023.2280350
Articles are hosted by Taylor and Francis Online.
A grid spacer with a vane is an influential segment in reactor fuel channels. A vane produces significant effects on flow mixing and augmentation of heat transfer in subchannnels. The purpose of this work was to do a computational fluid dynamics (CFD) analysis on the effects of a grid spacer vane on the thermal-hydraulic performance of fluid in a 5×5 fuel channel. A square array of a 5×5 fuel channel was used for this analysis with a pitch–to–rod diameter ratio of 1.33 and a blockage ratio of the grid spacer of 0.16. The relative study was made for the thermal-hydraulic performance among a grid spacer with a vane, a grid spacer (without a vane), and without a grid spacer (bare bundle). Analyses were made for fluid pressure of 15.5 MPa, inlet temperature of 583 K, and velocity of 4.74 m/s. The SST k-ω and RNG k-ε turbulence models were used to analyze flow phenomena and thermal performance. CFD results were validated with experiment data and were also compared with correlations proposed by researchers. The results were analyzed by different methods such as data curves, streamlines, and vector and contour plots. The results show that the strong characteristics of swirl flow in subchannels cause a greater mixing rate of turbulent flow, which hence improves heat transfer performance. The swirl ratio was observed maximum close downstream to a grid spacer with a vane. Grid spacer effects on heat transfer were noticed from z/Dh = 0 to 20 in downstream.