ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
Surian Pinem, Liem Peng Hong, Wahid Luthfi, Tukiran Surbakti, Donny Hartanto
Nuclear Science and Engineering | Volume 198 | Number 10 | October 2024 | Pages 1935-1949
Research Article | doi.org/10.1080/00295639.2023.2284433
Articles are hosted by Taylor and Francis Online.
The purpose of this study is to determine the kinetic parameters of the RSG-GAS equilibrium core. The calculated kinetic parameters are the effective delayed neutron fraction βeff, the neutron generation time Ʌ, and the prompt neutron lifetime ℓ since they are related to the safety of nuclear operations. The kinetic parameters were calculated using the Serpent 2 code with the ENDF/B-VII.1 and ENDF/B-VIII.0 nuclear data libraries. Calculations were performed using various adjoint-weighted methods such as Meulekamp’s method, Nauchi’s method, the Iterated Fission Probability method, and the Perturbation Technique. The calculated results of the six-group delayed neutron fraction by the Meulekamp and the IFP methods showed no significant difference. Choosing the IFP method as the reference, the maximum difference for βeff (694 pcm) is 0.73%, and the maximum difference for Ʌ and ℓ is 1.89%. The calculated kinetic parameters with ENDF/B-VII.1 and ENDF/B-VIII.0 are quite close, with a maximum difference of 0.9%. The sensitivity analysis results indicate several nuclides and reaction types that dominantly affect the βeff and Λ. The results of the kinetic parameter calculations can be used for the safety analysis of the RSG-GAS equilibrium core.