ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Surian Pinem, Liem Peng Hong, Wahid Luthfi, Tukiran Surbakti, Donny Hartanto
Nuclear Science and Engineering | Volume 198 | Number 10 | October 2024 | Pages 1935-1949
Research Article | doi.org/10.1080/00295639.2023.2284433
Articles are hosted by Taylor and Francis Online.
The purpose of this study is to determine the kinetic parameters of the RSG-GAS equilibrium core. The calculated kinetic parameters are the effective delayed neutron fraction βeff, the neutron generation time Ʌ, and the prompt neutron lifetime ℓ since they are related to the safety of nuclear operations. The kinetic parameters were calculated using the Serpent 2 code with the ENDF/B-VII.1 and ENDF/B-VIII.0 nuclear data libraries. Calculations were performed using various adjoint-weighted methods such as Meulekamp’s method, Nauchi’s method, the Iterated Fission Probability method, and the Perturbation Technique. The calculated results of the six-group delayed neutron fraction by the Meulekamp and the IFP methods showed no significant difference. Choosing the IFP method as the reference, the maximum difference for βeff (694 pcm) is 0.73%, and the maximum difference for Ʌ and ℓ is 1.89%. The calculated kinetic parameters with ENDF/B-VII.1 and ENDF/B-VIII.0 are quite close, with a maximum difference of 0.9%. The sensitivity analysis results indicate several nuclides and reaction types that dominantly affect the βeff and Λ. The results of the kinetic parameter calculations can be used for the safety analysis of the RSG-GAS equilibrium core.