ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
Lixun Liu, Han Zhang, Xinru Peng, Qinrong Dou, Yingjie Wu, Jiong Guo, Fu Li
Nuclear Science and Engineering | Volume 198 | Number 10 | October 2024 | Pages 1911-1934
Research Article | doi.org/10.1080/00295639.2023.2284447
Articles are hosted by Taylor and Francis Online.
The Jacobian-free Newton-Krylov (JFNK) method is a widely used and flexible numerical method for solving the neutronic/thermal-hydraulic coupling system. The main property of JFNK is that the Jacobian-vector product is evaluated approximately by finite difference, avoiding the forming and storage of Jacobian explicitly. However, the lack of an efficient preconditioner is a major bottleneck for the JFNK method, leading to poor convergence. The finite difference Jacobian-based Newton-Krylov (DJNK) method is another advanced numerical method, in which the Jacobian matrix is formed and stored explicitly. The DJNK method can provide a better preconditioner for Krylov iteration than JFNK. However, how to compute the Jacobian matrix efficiently and automatically is a key issue for the DJNK method. By fully utilizing the sparsity of the Jacobian matrix and graph coloring algorithm, the Jacobian can be computed efficiently. Unfortunately, when there are dense rows/blocks, a huge computational burden will emerge due to the lack of sparsity, resulting in the extremely poor efficiency of Jacobian computation. In this work, a Jacobian-split Newton-Krylov (JSNK) method is proposed to resolve the dense row/block problem by combining the advantages of JFNK and DJNK. The main feature of the JSNK method is to split the Jacobian matrix into sparse and dense parts. The sparse part of the Jacobian matrix is explicitly constructed using the graph coloring algorithm while for the dense part, the Jacobian-vector product is approximated by finite difference. The computational complexity of the JSNK method is analyzed and compared to the JFNK method and the DJNK method from theoretical and experimental aspects and under different meshes. A simplified two-dimensional (2-D) high-temperature gas-cooled reactor (HTR) model and a simplified 2-D pressurized water reactor model are utilized to demonstrate the superiority of the JSNK method. The numerical results show that the JSNK method successfully resolved the dense rows/blocks. More importantly, its efficiency significantly outperforms the JFNK method and the DJNK method.