ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
Xinyu Zhou, Kun Liu, Haitao Ju, Chen Zhao, Hongbo Zhang, Bo Wang, Wenbo Zhao, Zhang Chen
Nuclear Science and Engineering | Volume 198 | Number 9 | September 2024 | Pages 1879-1899
Research Article | doi.org/10.1080/00295639.2023.2280344
Articles are hosted by Taylor and Francis Online.
The linear axial expansion transport method avoids the negative source problem caused by transverse leakage in the traditional two-dimensional/one-dimensional (2D/1D) transport method and has better stability. However, stability is poor with the coarse-mesh finite difference (CMFD) accelerated linear axial expansion transport method. In this paper, the stability of the partial current–based coarse-mesh finite difference (p-CMFD) method, the optimally diffusive coarse-mesh finite difference (od-CMFD) method, and the linear prolongation coarse-mesh finite difference (lp-CMFD) method is studied based on Fourier analysis. The results of the Fourier analysis indicate that the problem is stable for axial coarse-mesh optical thickness less than 2 or larger than 50; the calculation diverges when the axial coarse-mesh optical thickness is between 2 and 50. The numerical results of the KUCA benchmark problem are the same as the results of the Fourier analysis.