ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
EnergySolutions to help explore advanced reactor development in Utah
Utah-based waste management company EnergySolutions announced that it has signed a memorandum of understating with the Intermountain Power Agency and the state of Utah to explore the development of advanced nuclear power generation at the Intermountain Power Project (IPP) site near Delta, Utah.
Xinyu Zhou, Kun Liu, Haitao Ju, Chen Zhao, Hongbo Zhang, Bo Wang, Wenbo Zhao, Zhang Chen
Nuclear Science and Engineering | Volume 198 | Number 9 | September 2024 | Pages 1879-1899
Research Article | doi.org/10.1080/00295639.2023.2280344
Articles are hosted by Taylor and Francis Online.
The linear axial expansion transport method avoids the negative source problem caused by transverse leakage in the traditional two-dimensional/one-dimensional (2D/1D) transport method and has better stability. However, stability is poor with the coarse-mesh finite difference (CMFD) accelerated linear axial expansion transport method. In this paper, the stability of the partial current–based coarse-mesh finite difference (p-CMFD) method, the optimally diffusive coarse-mesh finite difference (od-CMFD) method, and the linear prolongation coarse-mesh finite difference (lp-CMFD) method is studied based on Fourier analysis. The results of the Fourier analysis indicate that the problem is stable for axial coarse-mesh optical thickness less than 2 or larger than 50; the calculation diverges when the axial coarse-mesh optical thickness is between 2 and 50. The numerical results of the KUCA benchmark problem are the same as the results of the Fourier analysis.