ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New report lays out path to U.S. nuclear energy dominance
The new report “How America Can Achieve Nuclear Energy Dominance,” from the Working Group on U.S. Nuclear Energy Dominance, outlines a plan of action for the Trump administration that includes deploying new nuclear reactors, developing domestic supply chains, promoting nuclear exports, reforming regulations, and developing the workforce.
Working group chair Todd Abrajano said, “We welcome the Trump administration’s bold moves to kick-start the U.S. nuclear energy sector, but we recognize that President Trump’s executive orders alone can’t achieve our goals.”
Xinyu Zhou, Kun Liu, Haitao Ju, Chen Zhao, Hongbo Zhang, Bo Wang, Wenbo Zhao, Zhang Chen
Nuclear Science and Engineering | Volume 198 | Number 9 | September 2024 | Pages 1879-1899
Research Article | doi.org/10.1080/00295639.2023.2280344
Articles are hosted by Taylor and Francis Online.
The linear axial expansion transport method avoids the negative source problem caused by transverse leakage in the traditional two-dimensional/one-dimensional (2D/1D) transport method and has better stability. However, stability is poor with the coarse-mesh finite difference (CMFD) accelerated linear axial expansion transport method. In this paper, the stability of the partial current–based coarse-mesh finite difference (p-CMFD) method, the optimally diffusive coarse-mesh finite difference (od-CMFD) method, and the linear prolongation coarse-mesh finite difference (lp-CMFD) method is studied based on Fourier analysis. The results of the Fourier analysis indicate that the problem is stable for axial coarse-mesh optical thickness less than 2 or larger than 50; the calculation diverges when the axial coarse-mesh optical thickness is between 2 and 50. The numerical results of the KUCA benchmark problem are the same as the results of the Fourier analysis.