ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
Patrick J. O’Neal, Sean P. Martinson, Sunil S. Chirayath
Nuclear Science and Engineering | Volume 198 | Number 9 | September 2024 | Pages 1817-1829
Research Article | doi.org/10.1080/00295639.2023.2271711
Articles are hosted by Taylor and Francis Online.
When the foundation of a method is simulated data, it is paramount that the method is validated with data from physical samples when possible. This study presents the results of validating a recently developed nuclear forensics methodology with a new low-burnup plutonium sample, chemically separated from low-enriched uranium irradiated in thermal neutron flux. The nuclear forensics methodology uses machine learning models to discriminate the reactor type of origin, fuel burnup, and time since irradiation (TSI) of chemically separated plutonium samples. The machine learning models use intra-elemental isotope ratios of cesium, samarium, europium, and plutonium as features; the isotopic ratio data for training the models were generated through fuel burnup simulations of various nuclear reactor types. The methodology predicted the reactor type and fuel burnup of the plutonium sample successfully. Initial difficulties to predict the TSI were resolved with the inclusion of a new intra-elemental isotope ratio of cerium.