ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
G. B. Hiremath, V. P. Singh, N. H. Ayachit, N. M. Badiger
Nuclear Science and Engineering | Volume 198 | Number 9 | September 2024 | Pages 1806-1816
Research Article | doi.org/10.1080/00295639.2023.2270742
Articles are hosted by Taylor and Francis Online.
The Ti-Nb-Fe-Cr alloys are used in various fields, such as nuclear radiation shielding, cladding material in nuclear reactors, and implants in the medical field. It is one of the best materials for biomedical applications as it is biocompatible, is corrosion resistant, and has good mechanical properties. As nuclear radiation emanates from various sources in a nuclear reactor, the behavior of this alloy with the interaction of gamma and neutrons has not been well studied. In the present investigations, the interaction of gammas and neutrons with Ti-27Nb-7Fe-xCr (x = 0, 2, 4, 6, and 8 wt%) alloys is studied in order to understand the radiation shielding properties and their usefulness in biomedical applications. Gamma-ray–interaction parameters such as MAC, HVL, MFP, Zeff, Zeq, Neff, and multilayer energy absorption buildup factor (MLEABF) are estimated using EpiXs, PyMLBUF, and NGCal software in the energy range of 1 keV to 15 MeV. The multilayer buildup factor (MLBF) is calculated for cortical bone and for alloys with varying Cr concentrations. Comparison of the MLBF values of alloys with cortical bone shows that in the lower-energy region as well as the higher-energy region above 0.5 MeV, alloys and cortical bone yield the same values, indicating that the alloys behave as cortical bone in this energy region. Mass attenuation factors (MAFs) of thermal and fast neutrons are also calculated for various elastic modulus values of selected alloys at thermal and fast neutrons. It is found that the elastic modulus increases with increasing MAF values of both fast and thermal neutrons. By increasing the Cr content in the Ti-27Nb-7Fe alloy, the elastic modulus decreases. The relationship between the MAF of neutrons and the elastic modulus of the alloy is established for the first time.