ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
EnergySolutions to help explore advanced reactor development in Utah
Utah-based waste management company EnergySolutions announced that it has signed a memorandum of understating with the Intermountain Power Agency and the state of Utah to explore the development of advanced nuclear power generation at the Intermountain Power Project (IPP) site near Delta, Utah.
Qicang Shen, Nickolas Adamowicz, Sooyoung Choi, Yuxuan Liu, Brendan Kochunas
Nuclear Science and Engineering | Volume 198 | Number 9 | September 2024 | Pages 1776-1805
Research Article | doi.org/10.1080/00295639.2023.2270740
Articles are hosted by Taylor and Francis Online.
This paper presents an innovative approach to efficiently perform deterministic direct whole-core transport calculations with multiphysics feedback for steady-state problems. Traditionally, Picard iteration combined with coarse mesh finite difference (CMFD) acceleration has been used, but it can suffer from instability and inefficiency in certain scenarios. In this work, we introduce the X-CMFD method, supported by Fourier analysis, to enhance the stability of the multiphysics iteration scheme. A new and efficient variation of the X-CMFD method for practical simulations is also present. Additionally, we explore the theoretical convergence rates of nonlinear fully coupled diffusion acceleration (NFCDA), a class of diffusion acceleration methods that formalizes similar ideas of previous research. NFCDA uses a low-order diffusion problem that is fully coupled with equivalent nonlinear multiphysics feedback to accelerate the high-order transport problem with feedback. The theoretical analysis shows that NFCDA offers similar convergence rates to nonlinear diffusion acceleration (NDA) in problems without feedback. This provides theoretical support for numerical experiments conducted by other researchers. X-CMFD, which is a discretized form of NFCDA, leverages typical coarse mesh concepts and operators from CMFD while applying feedback to cross sections in the low-order diffusion problem at each power iteration of the low-order problem. To reduce computational costs, we optimize the implementation of X-CMFD in MPACT by introducing an equivalent low-order approximation to the cross-section updates in the nonlinear low-order problem. Numerical results from pressurized water reactor problems demonstrate that X-CMFD, along with its practical implementation, outperforms current relaxed Picard iteration methods in terms of robustness and efficiency, irrespective of the presence of multiphysics feedback.