ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
Qicang Shen, Nickolas Adamowicz, Sooyoung Choi, Yuxuan Liu, Brendan Kochunas
Nuclear Science and Engineering | Volume 198 | Number 9 | September 2024 | Pages 1776-1805
Research Article | doi.org/10.1080/00295639.2023.2270740
Articles are hosted by Taylor and Francis Online.
This paper presents an innovative approach to efficiently perform deterministic direct whole-core transport calculations with multiphysics feedback for steady-state problems. Traditionally, Picard iteration combined with coarse mesh finite difference (CMFD) acceleration has been used, but it can suffer from instability and inefficiency in certain scenarios. In this work, we introduce the X-CMFD method, supported by Fourier analysis, to enhance the stability of the multiphysics iteration scheme. A new and efficient variation of the X-CMFD method for practical simulations is also present. Additionally, we explore the theoretical convergence rates of nonlinear fully coupled diffusion acceleration (NFCDA), a class of diffusion acceleration methods that formalizes similar ideas of previous research. NFCDA uses a low-order diffusion problem that is fully coupled with equivalent nonlinear multiphysics feedback to accelerate the high-order transport problem with feedback. The theoretical analysis shows that NFCDA offers similar convergence rates to nonlinear diffusion acceleration (NDA) in problems without feedback. This provides theoretical support for numerical experiments conducted by other researchers. X-CMFD, which is a discretized form of NFCDA, leverages typical coarse mesh concepts and operators from CMFD while applying feedback to cross sections in the low-order diffusion problem at each power iteration of the low-order problem. To reduce computational costs, we optimize the implementation of X-CMFD in MPACT by introducing an equivalent low-order approximation to the cross-section updates in the nonlinear low-order problem. Numerical results from pressurized water reactor problems demonstrate that X-CMFD, along with its practical implementation, outperforms current relaxed Picard iteration methods in terms of robustness and efficiency, irrespective of the presence of multiphysics feedback.