ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Tao Dai, Longfei Xu, Baiwen Li, Huayun Shen, Xueming Shi
Nuclear Science and Engineering | Volume 198 | Number 9 | September 2024 | Pages 1759-1775
Research Article | doi.org/10.1080/00295639.2023.2273569
Articles are hosted by Taylor and Francis Online.
The deterministic methods are efficient for solving the neutron transport equation (NTE), but suffer from discretization errors. The increasingly complex geometric models make spatial discretization errors the primary source of discretization errors. Considering that spatial discretization errors come from inaccurate geometric shape descriptions and low-accuracy numerical schemes, this paper develops a Discontinuous Galerkin Finite Element Method for the NTE on unstructured polygonal meshes to reduce spatial discretization errors. In this method, the physical modal basis is adopted to handle the polygonal mesh and to achieve high-order accuracy in a uniform and efficient way. The numerical results of various fixed-source and k-eigenvalue benchmarks demonstrate that the method developed in this paper can give accurate solutions on polygonal meshes with high convergence rates.