ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Ruixian Fang, Dan G. Cacuci
Nuclear Science and Engineering | Volume 198 | Number 8 | August 2024 | Pages 1682-1737
Computer Code Abstract | doi.org/10.1080/00295639.2023.2255725
Articles are hosted by Taylor and Francis Online.
This work presents a software module called 4th-Order-SENS, which enables the efficient computation of exactly obtained expressions for all sensitivities, up to and including the 4th order, of a functional of the particle flux (e.g., the leakage of particles out of a body) with respect to nuclear parameters (total, scattering, and fission cross sections; nu, chi, sources; and number densities) for systems modeled by the neutron transport equation. The 4th-Order-SENS module implements the nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Linear Systems (nth-CASAM-L), which is the only practically implementable methodology for obtaining the exact expressions of arbitrarily high-order sensitivities of model responses to model parameters, for response-coupled forward/adjoint large-scale linear systems. In addition to presenting the equations that are solved to obtain the 1st-order through 4th-order sensitivities, this work also describes the components of the module 4th-Order-SENS, including the user interface, input file, output files, and several independent code verification capabilities using symmetries and/or finite-difference formulas. The 4th-Order-SENS module is written in Python and Fortran and runs on Linux platforms. Several illustrative applications involving fixed-source problems in one-dimensional spherical and slab geometries are also presented.