ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Toshihiro Yamamoto, Hiroki Sakamoto
Nuclear Science and Engineering | Volume 198 | Number 8 | August 2024 | Pages 1607-1619
Research Article | doi.org/10.1080/00295639.2023.2266623
Articles are hosted by Taylor and Francis Online.
The inverse reactor period α is a fundamental mode eigenvalue of the α-mode nonlinear Boltzmann eigenvalue equation that considers delayed neutron contributions. Thus far, several Monte Carlo methods, including the α-k, weight balancing, and transition rate matrix methods, have been developed to calculate α. This study presents a new Monte Carlo method for predicting α by using the derivatives of the k-eigenvalue with respect to α. Formulae are derived to calculate the first and second derivatives using the differential operator sampling method. The key feature of the new proposed method is its ability to estimate the uncertainty of the predicted α by considering the uncertainty of the k-eigenvalue and its derivatives with respect to α.