ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
Adam R. Kraus, Elia Merzari, Mathieu Martin, Dustin Langewisch, Yassin Hassan
Nuclear Science and Engineering | Volume 198 | Number 7 | July 2024 | Pages 1455-1476
Research Article | doi.org/10.1080/00295639.2023.2255463
Articles are hosted by Taylor and Francis Online.
Flow circulation and heat removal through shield and reflector assemblies can have major impacts on safety in long transients for sodium fast reactors (SFRs). These transients are typically categorized by reduced flow rates and large-scale organized flow patterns, including potential intra-assembly circulation. Such low-flow cases can provide challenges for experiments because of complications in measuring the flow rates and temperatures with high accuracy in different areas. This consequently also raises the uncertainty of many modeling approaches for these phenomena. In an effort to address some of these issues, high-fidelity large eddy simulations are performed using the highly parallel solver NekRS. A 19-pin configuration of a tight-lattice wire-wrapped hexagonal bundle (pitch-to-diameter ratio = 1.07), representing a prototypical internal configuration of a shield assembly, was investigated. The sodium flow was set at a bundle Reynolds number of 2000, with simulations being performed for modified Richardson numbers of 0.0 (i.e., no buoyancy), 0.01, and 0.04, where mixed-convection effects are anticipated. The flow and temperature fields for these cases are discussed in detail. The high-fidelity data should prove useful as reference data for expanding and improving on various reduced-resolution approaches. A basic framework for combining subchannel and computational fluid dynamics methodologies in SFRs is also presented, with preliminary results from simulations of light water reactor bundles and a discussion of changes that need to be made for potential application to SFRs.