ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
X-energy begins irradiation testing at INL
Advanced reactor and fuel developer X-energy has officially begun confirmatory irradiation testing at Idaho National Laboratory on its TRISO-X fuel. The testing, which is taking place over the course of the next 13 months, will evaluate the fuel across a variety of operating scenarios and—if all goes according to plan—will be instrumental in qualifying it for commercial use.
Victor Coppo Leite, Elia Merzari, Jiaxin Mao, Victor Petrov, Annalisa Manera
Nuclear Science and Engineering | Volume 198 | Number 7 | July 2024 | Pages 1386-1403
Research Article | doi.org/10.1080/00295639.2023.2186159
Articles are hosted by Taylor and Francis Online.
In the present work, two large eddy simulations (LESs) of single isothermal jets discharging into large enclosure facilities are proposed. The geometries and tested flow conditions correspond to scaled experiments of the upper plenum of high-temperature gas-cooled reactors. More specifically, two reference experiments were conducted at Texas A&M University and Michigan University. The objective of the present work is to validate these simulations with their corresponding reference experiments. The proposed LES models are performed with NekRS, a spectral element code with graphics processing unit capabilities developed at Argonne National Laboratory. These simulations were performed on the Summit supercomputer at Oak Ridge National Laboratory. For validation purposes, first- and second-order statistics from the computational fluid dynamics (CFD) calculation are compared with measurements obtained from the experiments. The models proved to be accurate, as these results are in good agreement. Additionally, flow visualization is provided showing that these models are able to retrieve similar effects to what are described in the literature for this type of flow configuration. Finally, the proposed models are part of a broader effort under the current Integrated Research Project of Nuclear Energy Advanced Modeling and Simulation 1.1, whose main objective is to deliver fast-running models to accurately predict complex physical phenomena, including for instance, turbulent mixing and thermal stratification. In this regard, the CFD models proposed here will be used to generate a high-fidelity data set to be applied in conjunction with data-driven methods to improve turbulence modeling closures.