ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
EnergySolutions to help explore advanced reactor development in Utah
Utah-based waste management company EnergySolutions announced that it has signed a memorandum of understating with the Intermountain Power Agency and the state of Utah to explore the development of advanced nuclear power generation at the Intermountain Power Project (IPP) site near Delta, Utah.
J. Mao, S. Che, V. Petrov, A. Manera
Nuclear Science and Engineering | Volume 198 | Number 7 | July 2024 | Pages 1371-1385
Research Article | doi.org/10.1080/00295639.2023.2186726
Articles are hosted by Taylor and Francis Online.
The time-averaged particle image velocimetry technique has been applied to measure flow mixing in the Michigan Multi-jet Gas-mixture Dome (MiGaDome) facility, a 1/12th, scaled-down model of the high-temperature gas-cooled reactor upper plenum. Measurements were first conducted with one jet injection into the upper plenum for various Reynolds numbers (Re = 1022, 2038, 4097, and 6021). The experimental region of interest includes a plane within the dome located above one of the jet inlets of interest. First- and second-order statistics are presented and discussed to analyze the local mixing process and turbulent characteristics under the effects of jet spreading and jet impingement. Results have shown that the normalized statistics of the jet reach asymptotic behavior as the inlet Reynolds number is increased. By investigating the two-dimensional budgets for the momentum equation on the measurement plane, it was concluded that the contribution of turbulent diffusion is minor near the enclosure surface where strong convection is present due to impingement. An additional measurement on a triple-jet injection case has shown that jet spreading is suppressed by a recirculation zone, which causes a redistribution of turbulent fluctuations. The detailed local fluctuation patterns/coherent structures have been examined through a proper orthogonal decomposition analysis.