ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Cheng-Kai Tai, Jiaxin Mao, Victor Petrov, Annalisa Manera, Igor A. Bolotnov
Nuclear Science and Engineering | Volume 198 | Number 7 | July 2024 | Pages 1347-1370
Research Article | doi.org/10.1080/00295639.2023.2197656
Articles are hosted by Taylor and Francis Online.
Stable density stratification in a large enclosure could significantly hamper the effectiveness of natural convection cooling in pool-type liquid metal or gas-cooled advanced reactors. In addition, accurate prediction of stratified front behavior remains to be a challenging task for turbulence modeling. With the rapid growth of high-performance-computing capabilities in recent years, conducting high-fidelity simulations for a large-timescale transient has become more affordable and hence a valuable data source to support turbulence modeling as well as to gain further physical insights. In this work, direct numerical simulation is performed at experiment-consistent conditions to simulate the density stratification transient High-Resolution Jet (HiRJET) facility. Specifically, we focus on the case where an injected aqueous sugar solution has 1.5% density higher than that in the enclosure. In the early stage of the transient, the impingement of the denser jet to the bottom surface of the enclosure promoted turbulent mixing locally. This rendered the establishment of the mixture layer, formation and swift upward propagation of the stratified front, and elevation with (locally) the highest vertical concentration gradient. As the front rose, the diminishing turbulent mass flux slowed down the propagation, and a larger vertical concentration gradient was established. In this stage, both the velocity and the concentration scalar showed large-timescale fluctuation behavior around the stratified front. For the concentration time signal, the characteristic frequency in the power spectral density was found to agree well with the Brunt-Väisällä frequency. The preliminary validation endeavor showed that the stratified front location and the corresponding concentration gradient magnitude in the simulation agreed well with the experiment data. Further validation will mainly revolve around benchmarking against high-resolution density measurement and high-order flow statistics.