ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Xiangyun Zhou, De’An Sun, Shixiang Hu, Weiding Zhuo, Min Lin
Nuclear Science and Engineering | Volume 198 | Number 6 | June 2024 | Pages 1308-1319
Research Article | doi.org/10.1080/00295639.2023.2245281
Articles are hosted by Taylor and Francis Online.
This study aims to model the temperature evolution near the heater of an in situ heating test for a nuclear waste repository. Based on the governing equation of heat conduction, a mathematical model is established to obtain temporal and spatial temperature distributions in the in situ heating test. Then, semi-analytical solutions are derived using the Laplace and Fourier transforms and their inverse transforms. The corresponding results in the time domain are obtained by conducting the Crump method. The semi-analytical solution is applied to predict temperature change near the heater in two in situ heating tests. Finally, a parametric study is conducted to explore the impacts of some parameters on the temperature evolution of the buffer layer for one prototype repository in situ heating test. The results show that the semi-analytical solution of the proposed model can well predict the temperature change near the heater in the two in situ heating tests. The thermal conductivities of the buffer layer and the rock layer and the thickness of the buffer layer have significant effects on the temperature evolution of the buffer layer in the prototype repository in situ heating test.