ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
Bobbi Riedel, Christopher M. Perfetti, Forrest B. Brown
Nuclear Science and Engineering | Volume 198 | Number 6 | June 2024 | Pages 1276-1287
Research Article | doi.org/10.1080/00295639.2023.2249787
Articles are hosted by Taylor and Francis Online.
The goal of this study is to evaluate the accuracy of different upper subcritical limit (USL) calculational methods for loosely coupled and novel neutronic systems. This study varied the separation distance over five center-to-center separation distance intervals for four loosely coupled models and explored seven single-system neutronic models. Each of these 27 systems was simulated using MCNP6.2 with 200 randomly perturbed, continuous-energy ENDF/B-VII.1 cross-section files that are in the TENDL 2019 library. The distribution of the values from these perturbed runs was used to calculate stochastic 99/99 USL values for each model iteration. USLs were also estimated for these 20 systems using the Whisper 1.1 code, and the Whisper-identified relevant benchmarks were used to further analyze the relationship between the region-wise USL calculation and the overall system USL calculations. Sensitivity data files were produced using MCNP6.2 and then used with the Oak Ridge National Laboratory TSURFER and USLSTATS methods to estimate USLs for a cross-method USL comparison. A windowing study was performed when using the USLSTATS method to determine the efficacy of the method using datasets with differing degrees of similarity to the given application case. The results show that USLs for each of the loosely coupled system models were higher USLs than the calculated stochastic USLs. The single-system uranium models also displayed a consistently lower stochastic USL as compared to the USL calculational methods, while the single-system plutonium models showed close agreement between the stochastic USLs and the other USL calculational methods.