ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Olin W. Calvin, Namjae Choi
Nuclear Science and Engineering | Volume 198 | Number 6 | June 2024 | Pages 1255-1275
Research Article | doi.org/10.1080/00295639.2023.2241807
Articles are hosted by Taylor and Francis Online.
The Chebyshev Rational Approximation Method (CRAM) has become one of the dominant methods for solving the Bateman equations for nuclear fuel depletion analysis. Since its introduction over a decade ago, several improvements have been made to CRAM improving its accuracy and reducing its run time. We analyzed its run time using two previously published methods for solving the CRAM system of equations, direct matrix inversion (DMI) and sparse Gaussian elimination (SGE), for depletion systems of varying numbers of nuclides to see how the two methods perform relative to one another. In addition to these two methods, we introduced the Gauss-Seidel (GS) method for solving the CRAM system of equations and compared its performance relative to DMI and SGE for depletion systems with varying numbers of nuclides. We demonstrated that for practical purposes, GS is faster than SGE and DMI and achieves a practical level of accuracy. All testing was performed using the CRAM implementation in the Griffin reactor physics analysis application.