ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
Ryota Katano, Akito Oizumi, Masahiro Fukushima, Cheol Ho Pyeon, Akio Yamamoto, Tomohiro Endo
Nuclear Science and Engineering | Volume 198 | Number 6 | June 2024 | Pages 1215-1234
Research Article | doi.org/10.1080/00295639.2023.2246779
Articles are hosted by Taylor and Francis Online.
In this study, we have demonstrated that data assimilation (DA) using lead and bismuth sample reactivities measured in the Kyoto University Critical Assembly A-core can successfully reduce the uncertainty of the coolant void reactivity in accelerator-driven systems (ADSs) derived from inelastic scattering cross sections of lead and bismuth. We reevaluated and highlighted the experimental uncertainties and correlations of the sample reactivities for the DA formula. We used the MCNP6.2 code to evaluate the sample reactivities and their uncertainties and performed DA using the reactor analysis code system MARBLE. The high-sensitivity coefficients of the sample reactivities to lead and bismuth allowed us to reduce the cross-section–induced uncertainty of the void reactivity of the ADS from 6.3% to 4.8%, achieving a provisional target accuracy of 5% in this study. Furthermore, we demonstrated that the uncertainties arising from other dominant factors, such as minor actinides and steel, can be effectively reduced by using integral experimental data sets for the unified cross-section dataset ADJ2017.