ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New report lays out path to U.S. nuclear energy dominance
The new report “How America Can Achieve Nuclear Energy Dominance,” from the Working Group on U.S. Nuclear Energy Dominance, outlines a plan of action for the Trump administration that includes deploying new nuclear reactors, developing domestic supply chains, promoting nuclear exports, reforming regulations, and developing the workforce.
Working group chair Todd Abrajano said, “We welcome the Trump administration’s bold moves to kick-start the U.S. nuclear energy sector, but we recognize that President Trump’s executive orders alone can’t achieve our goals.”
Ryota Katano, Akito Oizumi, Masahiro Fukushima, Cheol Ho Pyeon, Akio Yamamoto, Tomohiro Endo
Nuclear Science and Engineering | Volume 198 | Number 6 | June 2024 | Pages 1215-1234
Research Article | doi.org/10.1080/00295639.2023.2246779
Articles are hosted by Taylor and Francis Online.
In this study, we have demonstrated that data assimilation (DA) using lead and bismuth sample reactivities measured in the Kyoto University Critical Assembly A-core can successfully reduce the uncertainty of the coolant void reactivity in accelerator-driven systems (ADSs) derived from inelastic scattering cross sections of lead and bismuth. We reevaluated and highlighted the experimental uncertainties and correlations of the sample reactivities for the DA formula. We used the MCNP6.2 code to evaluate the sample reactivities and their uncertainties and performed DA using the reactor analysis code system MARBLE. The high-sensitivity coefficients of the sample reactivities to lead and bismuth allowed us to reduce the cross-section–induced uncertainty of the void reactivity of the ADS from 6.3% to 4.8%, achieving a provisional target accuracy of 5% in this study. Furthermore, we demonstrated that the uncertainties arising from other dominant factors, such as minor actinides and steel, can be effectively reduced by using integral experimental data sets for the unified cross-section dataset ADJ2017.