ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
Jesse M. Brown, Devin P. Barry, Robert C. Block, Amanda Youmans, Hyun Choun, Adam Ney, Ezekiel Blain, Michael J. Rapp, Yaron Danon
Nuclear Science and Engineering | Volume 198 | Number 6 | June 2024 | Pages 1155-1165
Research Article | doi.org/10.1080/00295639.2023.2249786
Articles are hosted by Taylor and Francis Online.
To resolve discrepancies in evaluated cross sections among major nuclear data libraries, energy-differential neutron transmission and radiative capture yield of 181Ta were measured from 0.15 to 100 keV using multiple sample thicknesses. The new measurements provide resolution such that the resolved resonance region (RRR) can be evaluated up to at least 2.5 keV and the unresolved resonance region can be evaluated up to at least 100 keV. The transmission and capture yield measurements were modeled using resonance parameters from three major libraries to assess the predictive capability of each. It was found that JENDL-5.0 performed best in the RRR. Because of the poor performance of the U.S. ENDF/B evaluation, it is recommended that ENDF/B be reevaluated for 181Ta.