ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
The spark of the Super: Teller–Ulam and the birth of the H-bomb—rivalry, credit, and legacy at 75 years
In early 1951, Los Alamos scientists Edward Teller and Stanislaw Ulam devised a breakthrough that would lead to the hydrogen bomb [1]. Their design gave the United States an initial advantage in the Cold War, though comparable progress was soon achieved independently in the Soviet Union and the United Kingdom.
Aaron Barry, Markus H. A. Piro
Nuclear Science and Engineering | Volume 198 | Number 5 | May 2024 | Pages 1131-1154
Research Article | doi.org/10.1080/00295639.2023.2229193
Articles are hosted by Taylor and Francis Online.
Canada has operated 17 research reactors at 11 different locations. The spent fuel from these research reactors differs significantly from CANDU fuel, which makes up the vast majority of spent fuel in Canada, and will eventually require disposal. The focus of this paper is to identify properties specific to Canadian research reactor fuel designs that would impact their suitability for disposal. The radionuclide inventory, hazardous chemical inventory, decay heat, residual enrichment, radiation decay rates, and gas generation of several Canadian research reactor fuel designs were simulated using the SCALE 6.2.4 software suite. The National Research Universal U3Si/Al dispersion rod, the National Research Experimental uranium metal X-rod, the Royal Military College UO2 SLOWPOKE-2 core, and the Whiteshell Reactor 1 uranium carbide bundle were investigated. Fuel burnup is the primary driver for the concentration of most radionuclides, hazardous chemicals, decay heat, and radiation decay rates. Carbon-14, chlorine-36, and mercury are driven by initial impurities in the fuel, which vary by fuel design. Low burnup, enriched fuels constitute a reasonable bounding case for the evaluation of criticality safety and proliferation risks. Canadian research reactor fuels are unlikely to present a greater risk of over pressurization from helium generation than CANDU fuel. Overall, the small volume of Canadian research reactor fuels requiring disposal is an important factor in the evaluation of disposal requirements.