ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
Aaron Barry, Markus H. A. Piro
Nuclear Science and Engineering | Volume 198 | Number 5 | May 2024 | Pages 1131-1154
Research Article | doi.org/10.1080/00295639.2023.2229193
Articles are hosted by Taylor and Francis Online.
Canada has operated 17 research reactors at 11 different locations. The spent fuel from these research reactors differs significantly from CANDU fuel, which makes up the vast majority of spent fuel in Canada, and will eventually require disposal. The focus of this paper is to identify properties specific to Canadian research reactor fuel designs that would impact their suitability for disposal. The radionuclide inventory, hazardous chemical inventory, decay heat, residual enrichment, radiation decay rates, and gas generation of several Canadian research reactor fuel designs were simulated using the SCALE 6.2.4 software suite. The National Research Universal U3Si/Al dispersion rod, the National Research Experimental uranium metal X-rod, the Royal Military College UO2 SLOWPOKE-2 core, and the Whiteshell Reactor 1 uranium carbide bundle were investigated. Fuel burnup is the primary driver for the concentration of most radionuclides, hazardous chemicals, decay heat, and radiation decay rates. Carbon-14, chlorine-36, and mercury are driven by initial impurities in the fuel, which vary by fuel design. Low burnup, enriched fuels constitute a reasonable bounding case for the evaluation of criticality safety and proliferation risks. Canadian research reactor fuels are unlikely to present a greater risk of over pressurization from helium generation than CANDU fuel. Overall, the small volume of Canadian research reactor fuels requiring disposal is an important factor in the evaluation of disposal requirements.