ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
P. S. Prusachenko, T. L. Bobrovskiy, M. V. Bokhovko, A. F. Gurbich
Nuclear Science and Engineering | Volume 198 | Number 5 | May 2024 | Pages 1062-1074
Research Article | doi.org/10.1080/00295639.2023.2236477
Articles are hosted by Taylor and Francis Online.
The thick target neutron spectra from the 13C(α,n0)16O reaction were measured for the energy range of 3.0 to 6.5 MeV at 10 angles in the laboratory angle interval of 0 to 150 deg. The thick target yield (TTY) was determined by integration of the neutron spectra over the neutron energy range corresponding to the 13C(α,n0)16O reaction followed by integration of the obtained angular distribution of the differential TTY over the solid angle 4π. The content of 13C atoms in the target was determined by ion beam analysis with accuracy of <1%. The obtained TTY values support the calculated ones based on the 16O(n,α0)13C reaction cross-section evaluation from the ENDF/B-VIII.0 library.