ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Nuclear advocates push lawmakers in Texas
As state legislatures nationwide near the end of their spring sessions, nuclear advocates hope to spur momentum on Texas legislation that would provide taxpayer-funded grants to developers of new nuclear technology in the state.
P. S. Prusachenko, T. L. Bobrovskiy, M. V. Bokhovko, A. F. Gurbich
Nuclear Science and Engineering | Volume 198 | Number 5 | May 2024 | Pages 1062-1074
Research Article | doi.org/10.1080/00295639.2023.2236477
Articles are hosted by Taylor and Francis Online.
The thick target neutron spectra from the 13C(α,n0)16O reaction were measured for the energy range of 3.0 to 6.5 MeV at 10 angles in the laboratory angle interval of 0 to 150 deg. The thick target yield (TTY) was determined by integration of the neutron spectra over the neutron energy range corresponding to the 13C(α,n0)16O reaction followed by integration of the obtained angular distribution of the differential TTY over the solid angle 4π. The content of 13C atoms in the target was determined by ion beam analysis with accuracy of <1%. The obtained TTY values support the calculated ones based on the 16O(n,α0)13C reaction cross-section evaluation from the ENDF/B-VIII.0 library.