ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Ana Carolina Santos de Souza, Luiz Rogério Pinho de Andrade Lima
Nuclear Science and Engineering | Volume 198 | Number 5 | May 2024 | Pages 1051-1061
Research Article | doi.org/10.1080/00295639.2023.2229600
Articles are hosted by Taylor and Francis Online.
Monazite is one of the main light rare earth element (REE) minerals and is associated with the presence of Th. This poses challenges in processing due to the strong radiation present in this mineral. However, the use of Th as a nuclear fuel, after the transformation of 232Th into 233U, has been considered a better option than the currently more widespread use of 235U. Therefore, the separation of Th from the REE after leaching is an essential step that requires optimization.
In this study, the treatment of a leach solution in a hydrochloric medium from dephosphorized monazite is addressed. The separation of Th from light REEs was performed by solvent extraction with Cyanex 572 or 272. The tests considered included (1) the ratio of the monazite leaching liquor and organic solution, (2) the initial pH values, and (3) the concentration of the extractants. The aqueous-phase samples were analyzed by Inductively Coupled Plasma Optical Emission spectroscopy (ICP-OES). It was observed that at low pH, 60% of the Th was extracted by Cyanex 272 and 90% by Cyanex 572 in one single step. Acidity had little effect on Th extraction. The extractions of light REEs by Cyanex 272 and 572 were negligible in most cases, but for pH values greater than 2, Cyanex 272 extracted a considerable fraction of these elements, which did not occur with Cyanex 572. The results show that Th can be easily separated from light REEs in an acidic and hydrochloric medium by both Cyanex 272 and Cyanex 572.