ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Akio Yamamoto, Tomohiro Endo, Satoshi Takeda, Hiroki Koike, Kazuya Yamaji, Koji Asano
Nuclear Science and Engineering | Volume 198 | Number 5 | May 2024 | Pages 981-992
Research Article | doi.org/10.1080/00295639.2023.2230414
Articles are hosted by Taylor and Francis Online.
A deterministic transport calculation method is proposed for the treatment of dispersed fuel particles in a fuel compact/fuel pebble of a typical high-temperature gas-cooled reactor fuel. The random distribution of fuel particles was considered using the statistical geometry (STG) method, which is widely used in the Monte Carlo method. A long-ray trace, which represents a neutron flight path, was considered, and the segment lengths and material distributions on the ray trace were randomly sampled using STG. Then a conventional transport sweep, as used in the method of characteristics, was performed along the ray trace. The proposed deterministic statistical geometry (DSTG) method can calculate the flux spatial distribution in a heterogeneous geometry containing randomly dispersed fuel particles and the surrounding graphite matrix, which is consistent with the STG in a Monte Carlo method. The validity of the DSTG method was confirmed through sensitivity calculations and comparisons with a multigroup Monte Carlo method that utilizes STG. The proposed method can be used for the homogenization of heterogeneous structures inside a fuel compact or fuel pebble as an alternative to conventional deterministic unit cell calculations that consider fuel particles and the surrounding matrix in high-temperature gas-cooled reactor fuels.