ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
The spark of the Super: Teller–Ulam and the birth of the H-bomb—rivalry, credit, and legacy at 75 years
In early 1951, Los Alamos scientists Edward Teller and Stanislaw Ulam devised a breakthrough that would lead to the hydrogen bomb [1]. Their design gave the United States an initial advantage in the Cold War, though comparable progress was soon achieved independently in the Soviet Union and the United Kingdom.
Sooyoung Choi, Andrew Fitzgerald, Nicholas Herring, Brendan Kochunas
Nuclear Science and Engineering | Volume 198 | Number 4 | April 2024 | Pages 914-944
Research Article | doi.org/10.1080/00295639.2023.2224234
Articles are hosted by Taylor and Francis Online.
This work seeks to improve upon an existing formulation of the Method of Characteristics (MOC) with a Linear Source Approximation (LSA) for problems that use nonconstant cross sections like multiphysics feedback and the two-dimensional/one-dimensional (2D/1D) formulation. The previous LSA formulation for lattice physics calculations uses precomputed coefficients that are dependent on the multigroup total or transport cross sections, and the method can be demonstrated to lack robustness when there are negative sources. In this paper, the method is reformulated to eliminate the cross-section dependence of the precomputed coefficients without adding additional operations, and a more robust formulation is also developed to prevent the calculation of negative sources. Thus, the method has increased efficiency and robustness in multiphysics and 2D/1D simulations. The new method is implemented in the MPACT code and tested on several light water reactor problems. The numerical results show that with the new Linear Source formulation, the number of mesh elements can be significantly reduced while maintaining accuracy, resulting in reduced run time and memory usage. Furthermore, our results demonstrate improved efficiency for cases with depletion, thermal-hydraulic feedback, and in three-dimensional (2D/1D) calculations without any robustness issues.