ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
EnergySolutions to help explore advanced reactor development in Utah
Utah-based waste management company EnergySolutions announced that it has signed a memorandum of understating with the Intermountain Power Agency and the state of Utah to explore the development of advanced nuclear power generation at the Intermountain Power Project (IPP) site near Delta, Utah.
Gabriele Ferrero, Raffaella Testoni, Massimo Zucchetti
Nuclear Science and Engineering | Volume 198 | Number 4 | April 2024 | Pages 898-913
Research Article | doi.org/10.1080/00295639.2023.2219815
Articles are hosted by Taylor and Francis Online.
Molten salt systems have become of growing interest in the energy industry due to a wide range of applications (concentrated solar power systems, energy storage, Generation IV fission reactors, and high magnetic field fusion reactors). Because of the high temperature that characterizes such materials, radiative heat transfer (RHT) may become a nonnegligible heat transfer mechanism in molten salt components. In this paper, an investigation of FLiBe RHT has been conducted, with a focus on Affordable, Robust, Compact (ARC)–class fusion reactors, a preconceptual design proposed by Commonwealth Fusion Systems and the Plasma Science and Fusion Center. This class of reactors largely employs FLiBe molten salt due to its thermal and neutronic properties. The reactor is characterized by high temperatures, and its 0.5-m-thick liquid immersion blanket is a component where RHT contribution to the temperature distribution is yet to be evaluated. Therefore, this study is the first work that quantifies the contribution of RHT in ARC-class reactor FLiBe systems. FLiBe optical property spectral-banding assessment is carried out, and the impact of RHT in FLiBe systems is assessed in operational ARC-class scenarios through computational fluid dynamics models by taking advantage of COMSOL® Multiphysics. Heat transfer, thermal-dependent properties, and buoyancy effects are considered in a comparison between scenarios with and without RHT modeling. The flow field in the tank is unaffected by RHT effects, even when considering buoyancy effects. The external layer of the vacuum vessel shows an average decrease in the temperature of 5.4 K and an average decrease in temperature on the surface in contact with the FLiBe tank of 8.1 K. Results indicate that for ARC-class reactors, RHT phenomena are negligible (<1% increase in heat transfer) in operational conditions.