ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
EnergySolutions to help explore advanced reactor development in Utah
Utah-based waste management company EnergySolutions announced that it has signed a memorandum of understating with the Intermountain Power Agency and the state of Utah to explore the development of advanced nuclear power generation at the Intermountain Power Project (IPP) site near Delta, Utah.
Marco Tiberga, Simone Santandrea
Nuclear Science and Engineering | Volume 198 | Number 4 | April 2024 | Pages 853-897
Research Article | doi.org/10.1080/00295639.2023.2214488
Articles are hosted by Taylor and Francis Online.
The development of higher-order method of characteristics (MOC) discretizations has become of great interest to improve the performance of solvers based on the standard Stepwise Constant (SC) MOC approximation. Many codes nowadays implement a Stepwise Linear (SL) volume flux approximation or diamond differencing schemes. In the multigroup lattice solver TDT of the industrial code APOLLO3®, developed at CEA, a Linear Surface (LS) scheme was implemented. In this method, the flux is reconstructed from a linear interpolation made from surface values, therefore ensuring a similar spatial linear development but with a lower computational cost than the volume-based approximations. However, the LS-MOC scheme can conserve only the constant spatial moment of the flux. To overcome this limitation, in this paper we propose an improved version of the LS scheme called LS- able to preserve the linear spatial moments of the flux. Compared to the other high-order volume-based approximations, the LS- scheme also preserves flux surface moments, which guarantees higher accuracy. Moreover, our scheme has a lower memory footprint because it does not require the storage of response matrices that are dependent on region, group, and anisotropy order. Tests carried out on severe rodded assembly cases show the superior performance of the proposed method with respect to not only the classic SC or LS MOC scheme but also the SL scheme.