ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Restart progress and a new task force in Iowa
This week, Iowa Gov. Kim Reynolds signed an executive order to form the Iowa Nuclear Energy Task Force, the purpose of which will be to “advise her, the General Assembly, and relevant state agencies on the development and advancement of nuclear energy technologies and infrastructure in the state.”
Zachary K. Hardy, Jim E. Morel
Nuclear Science and Engineering | Volume 198 | Number 4 | April 2024 | Pages 832-852
Research Article | doi.org/10.1080/00295639.2023.2218581
Articles are hosted by Taylor and Francis Online.
In this paper, a non-intrusive reduced-order model (ROM) for parametric reactor kinetics simulations is presented. Time-dependent ROMs are notoriously data intensive and difficult to implement when nonlinear multiphysics phenomena are considered. These challenges are exacerbated when parametric dependencies are included. The proper orthogonal decomposition mode coefficient interpolation (POD-MCI) ROM presented in this work can be constructed directly from lower-dimensional full-order model (FOM) outputs and is independent of the underlying model. This greatly alleviates the data requirement of many existing ROMs and can be used without modification on arbitrarily complex models or experimental data. The POD-MCI ROM is demonstrated on a number of examples and yields accurate characterizations of the parametric behaviors of both FOM outputs and derived quantities of interest within the selected parameter spaces, at extremely attractive computational speedup factors relative to FOMs.